8 research outputs found

    Non-canonical DNA transcription enzymes and the conservation of two-barrel RNA polymerases

    Get PDF
    DNA transcription depends on multimeric RNA polymerases that are exceptionally conserved in all cellular organisms, with an active site region of >500 amino acids mainly harboured by their Rpb1 and Rpb2 subunits. Together with the distantly related eukaryotic RNA-dependent polymerases involved in gene silencing, they form a monophyletic family of ribonucleotide polymerases with a similarly organized active site region based on two double-Ψ barrels. Recent viral and phage genome sequencing have added a surprising variety of putative nucleotide polymerases to this protein family. These proteins have highly divergent subunit composition and amino acid sequences, but always contain eight invariant amino acids forming a universally conserved catalytic site shared by all members of the two-barrel protein family. Moreover, the highly conserved ‘funnel’ and ‘switch 2’ components of the active site region are shared by all putative DNA-dependent RNA polymerases and may thus determine their capacity to transcribe double-stranded DNA templates

    The YEATS domain of Taf14 in Saccharomyces cerevisiae has a negative impact on cell growth

    Get PDF
    The role of a highly conserved YEATS protein motif is explored in the context of the Taf14 protein of Saccharomyces cerevisiae. In S. cerevisiae, Taf14 is a protein physically associated with many critical multisubunit complexes including the general transcription factors TFIID and TFIIF, the chromatin remodeling complexes SWI/SNF, Ino80 and RSC, Mediator and the histone modification enzyme NuA3. Taf14 is a member of the YEATS superfamily, conserved from bacteria to eukaryotes and thought to have a transcription stimulatory activity. However, besides its ubiquitous presence and its links with transcription, little is known about Taf14’s role in the nucleus. We use structure–function and mutational analysis to study the function of Taf14 and its well conserved N-terminal YEATS domain. We show here that the YEATS domain is not necessary for Taf14’s association with these transcription and chromatin remodeling complexes, and that its presence in these complexes is dependent only on its C-terminal domain. Our results also indicate that Taf14’s YEATS domain is not necessary for complementing the synthetic lethality between TAF14 and the general transcription factor TFIIS (encoded by DST1). Furthermore, we present evidence that the YEATS domain of Taf14 has a negative impact on cell growth: its absence enables cells to grow better than wild-type cells under stress conditions, like the microtubule destabilizing drug benomyl. Moreover, cells expressing solely the YEATS domain grow worser than cells expressing any other Taf14 construct tested, including the deletion mutant. Thus, this highly conserved domain should be considered part of a negative regulatory loop in cell growth

    The Human Cell Atlas White Paper

    Get PDF
    The Human Cell Atlas (HCA) will be made up of comprehensive reference maps of all human cells - the fundamental units of life - as a basis for understanding fundamental human biological processes and diagnosing, monitoring, and treating disease. It will help scientists understand how genetic variants impact disease risk, define drug toxicities, discover better therapies, and advance regenerative medicine. A resource of such ambition and scale should be built in stages, increasing in size, breadth, and resolution as technologies develop and understanding deepens. We will therefore pursue Phase 1 as a suite of flagship projects in key tissues, systems, and organs. We will bring together experts in biology, medicine, genomics, technology development and computation (including data analysis, software engineering, and visualization). We will also need standardized experimental and computational methods that will allow us to compare diverse cell and tissue types - and samples across human communities - in consistent ways, ensuring that the resulting resource is truly global. This document, the first version of the HCA White Paper, was written by experts in the field with feedback and suggestions from the HCA community, gathered during recent international meetings. The White Paper, released at the close of this yearlong planning process, will be a living document that evolves as the HCA community provides additional feedback, as technological and computational advances are made, and as lessons are learned during the construction of the atlas

    Functions of Saccharomyces cerevisiae TFIIF during Transcription Start Site Utilization ▿

    No full text
    Previous studies have shown that substitutions in the Tfg1 or Tfg2 subunits of Saccharomyces cerevisiae transcription factor IIF (TFIIF) can cause upstream shifts in start site utilization, resulting in initiation patterns that more closely resemble those of higher eukaryotes. In this study, we report the results from multiple biochemical assays analyzing the activities of wild-type yeast TFIIF and the TFIIF Tfg1 mutant containing the E346A substitution (Tfg1-E346A). We demonstrate that TFIIF stimulates formation of the first two phosphodiester bonds and dramatically stabilizes a short RNA-DNA hybrid in the RNA polymerase II (RNAPII) active center and, importantly, that the Tfg1-E346A substitution coordinately enhances early bond formation and the processivity of early elongation in vitro. These results are discussed within a proposed model for the role of yeast TFIIF in modulating conformational changes in the RNAPII active center during initiation and early elongation

    The Human Cell Atlas White Paper

    No full text
    The Human Cell Atlas (HCA) will be made up of comprehensive reference maps of all human cells - the fundamental units of life - as a basis for understanding fundamental human biological processes and diagnosing, monitoring, and treating disease. It will help scientists understand how genetic variants impact disease risk, define drug toxicities, discover better therapies, and advance regenerative medicine. A resource of such ambition and scale should be built in stages, increasing in size, breadth, and resolution as technologies develop and understanding deepens. We will therefore pursue Phase 1 as a suite of flagship projects in key tissues, systems, and organs. We will bring together experts in biology, medicine, genomics, technology development and computation (including data analysis, software engineering, and visualization). We will also need standardized experimental and computational methods that will allow us to compare diverse cell and tissue types - and samples across human communities - in consistent ways, ensuring that the resulting resource is truly global. This document, the first version of the HCA White Paper, was written by experts in the field with feedback and suggestions from the HCA community, gathered during recent international meetings. The White Paper, released at the close of this yearlong planning process, will be a living document that evolves as the HCA community provides additional feedback, as technological and computational advances are made, and as lessons are learned during the construction of the atlas
    corecore